Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides.

PMID 22941279


CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications.

Related Materials

Product #



Molecular Formula

Add to Cart

Boron nitride, powder, ~1 μm, 98%