EMAIL THIS PAGE TO A FRIEND

Chemical biology & drug design

Potent melanin production enhancement of human tyrosinase gene by Tat and an entrapment in elastic cationic niosomes: potential application in vitiligo gene therapy.


PMID 22958397

Abstract

Potent melanin production enhancement of human tyrosinase plasmid (pAH7/Tyr, P) in mouse melanoma cells (B(16)F(10)) by Tat peptide (T) and an entrapment in elastic cationic niosomes (E) was described. The E composed of Tween 61/cholesterol/dodecyl dimethyl ammonium bromide at 1:1:0.5 molar ratio was prepared by freeze-dried emptying liposomes method. PE at P/E ratio of 1:160 w/w and TPE at T/P/E ratio of 0.125:1:160, 0.25:1:160, and 0.5:1:160 w/w/w were prepared. The final concentration of the plasmid in the study was 4 ng/μL. By sulforhodamine B assay, PE and TPE complexes showed slight or no cytotoxic effect. The cells transfected with TPE (0.5:1:160) exhibited the highest enhancement of tyrosinase enzyme activity of 11.82-, 7.67-, 5.07-, and 6.29-folds of control, P, PE, and TP (0.5:1) and melanin production of 13.03-, 8.46-, 5.36-, and 6.58-folds of control, P, PE, and TP (0.5:1), respectively. The elastic cationic niosomes demonstrated an increase in thermal stability of P at 4 ± 2, 25 ± 2, and 45 ± 2 °C. The vesicular size and the zeta potential values of PE and TPE complexes were slightly increased but still in the range of stable dispersion (out of ±30 mV). These results indicated the high potential application of the TPE complexes for further investigation for vitiligo gene therapy.