EMAIL THIS PAGE TO A FRIEND

Macromolecular bioscience

Development of protein-cage-based delivery nanoplatforms by polyvalently displaying β-cyclodextrins on the surface of ferritins through copper(I)-catalyzed azide/alkyne cycloaddition.


PMID 22965861

Abstract

Protein cages are spherical hollow macromolecules that are attractive platforms for the construction of nanoscale cargo delivery vehicles. Human heavy-chain ferritin (HHFn) is modified genetically to control the number and position of functional groups per cage. 24 β-CDs are conjugated precisely to the modified HHFn in specific locations through thiol-maleimide Michael-type addition followed by copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC). The resulting human ferritins displaying β-CDs (β-CD-C90 HHFn) can form inclusion complexes with FITC-AD, which can slowly release the guest molecule reversibly in a buffer solution via non-covalent β-CD/AD interactions. β-CD-C90 HHFn can potentially be used as delivery vehicles for insoluble drugs.

Related Materials