EMAIL THIS PAGE TO A FRIEND

Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine

Chelidonine isolated from ethanolic extract of Chelidonium majus promotes apoptosis in HeLa cells through p38-p53 and PI3K/AKT signalling pathways.


PMID 22979935

Abstract

To evaluate the role of chelidonine isolated from ethanolic extract of Chelidonium majus in inducing apoptosis in HeLa cells and to assess the main signalling pathways involved. Cells were initially treated with different concentrations of chelidonine for 48 h and the median lethal dose (LD50) value was selected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Morphological analysis of nuclear condensation and DNA damage and fragmentation were measured by 4',6-diamidino-2-phenylindole staining and comet assay. Further, reactive oxygen species (ROS) generation, cell cycle arrest and change in mitochondrial membrane potential were also examined and analyzed by flow cytometry. Evaluation of interaction of drug with CT DNA was investigated by circular dichroism (CD) spectral analysis to find any possible drug-CT DNA interaction. The mRNA and protein expressions of major signal proteins like p38, p53, protein kinase B (AKT), phosphatidylinositol 3-kinases (PI3K), Janus kinase 3 (JAK3), signal transducer and activator of transcription 3 (STAT3) and E6 and E7 oncoproteins as well as the pro-apoptotic genes and antiapoptotic genes were also estimated by reverse transcriptase-polymerase chain reaction and Western blotting. Based on LD(50) value (30 μg/mL) of chelidonine, three doses were selected, namely, 22.5 μg/mL (D1), 30.0 μg/mL (D2) and 37.5 μg/mL (D3). Results showed that chelidonine inhibited proliferation and induced apoptosis in HeLa cells through generation of ROS, cell cycle arrest at sub-G1 and G0/G1 stage, change in mitochondrial membrane potential and fragmentation of DNA. Results of CD spectra showed effective interaction between chelidonine and calf thymus DNA. Studies of signalling pathway revealed that chelidonine could efficiently induce apoptosis through up-regulation of expressions of p38, p53 and other pro-apoptotic genes and down-regulation of expressions of AKT, PI3K, JAK3, STAT3, E6, E7 and other antiapoptotic genes. Chelidonine isolated from Chelidonium majus efficiently induced apoptosis in HeLa cells through possible alteration of p38-p53 and AKT/PI3 kinase signalling pathways.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

54274
Chelidonine, ≥97.0% (HPLC)
C20H19NO5