EMAIL THIS PAGE TO A FRIEND

European journal of medicinal chemistry

Cytotoxic 2-phenyacrylnitriles, the importance of the cyanide moiety and discovery of potent broad spectrum cytotoxic agents.


PMID 23047225

Abstract

We previously reported the discovery of a simple conjugated cyano pharmacophore which had led to the development of (Z)-2-(3,4-dichlorophenyl)-3-(4-nitrophenyl)acrylonitrile, as a selective inhibitor of oestrogen receptor positive (ER+ve) human breast cancer cell line, MCF-7. Further exploration though modification of the acrylonitrile and aromatic substituents has highlighted key structural components necessary for broad spectrum cytotoxicity. The acrylic acid derivates (Z)-2-(3,4-dichlorophenyl)-3-(4-nitrophenyl)acrylic acid and (Z)-2-(3,4-dichlorophenyl)-3-(4-methoxyphenyl)acrylic acid (9) were inactive; confirming the importance of the cyanide moiety. The most potent 2-phenylacrylonitriles synthesized were (Z)-2-(3,4-dichlorophenyl)-3-(1H-indol-3-yl)acrylonitrile and (Z)-2-(3,4-dichlorophenyl)-3-(1H-indol-5-yl)acrylonitrile (20) with an average GI(50) values of 1.4 and 0.53 μM respectively. Five additional (Z)-2-(3,4-dichlorophenyl)-3-(indolyl)acrylonitriles also displayed average GI(50) values of ≤8.4 μM. In the case of indole, this represents a 32-fold increase in broad spectrum cytotoxicity relative to the lead.