Journal of tissue engineering and regenerative medicine

Ciliary neurotrophic factor (CNTF) promotes skeletal muscle progenitor cell (MPC) viability via the phosphatidylinositol 3-kinase-Akt pathway.

PMID 23147834


Muscle progenitor cells (MPCs) are currently being investigated as cellular vectors to deliver neurotrophic factor (NF) for the promotion of re-innervation after axonal injury. Ideally NF delivery in such a model would enhance axonal regeneration while simultaneously promoting MPC viability. To date, insulin-like growth factor 1 (IGF-1) is one of the few NFs known to promote both re-innervation and MPC viability. We herein identify ciliary neurotrophic factor (CNTF) as a factor that promotes MPC viability in culture, and demonstrate CNTF to impart greater viability effects on MPCs than IGF-1. We demonstrate that pharmacological inhibition via LY294002 results in abrogation of CNTF-mediated viability, suggesting that the CNTF-mediated MPC viability benefit occurs via the PI3-Akt pathway. Finally, we employ a genetic model, establishing MPC cultures from mice deficient in class IA PI-3 K (p85α(-/-) ) mice, and demonstrate that the viability benefit imparted by CNTF is completely abrogated in PI-3 K-deficient MPCs compared to wild-type controls. In summary, our investigations define CNTF as a promoter of MPC viability beyond IGF-1, and reveal that the CNTF-mediated MPC viability effects occur via the PI3-Akt pathway.