Journal of dairy science

Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine.

PMID 23164225


An ideal profile of essential AA (EAA) can improve the efficiency of metabolizable protein (or PDIE, the equivalent in the INRA feeding system) utilization in dairy cows. Compared with other EAA, existing recommendations for the requirements of Arg, Ile, and Val are few and inconsistent. Four multiparous Holstein dairy cows at 22±6 wk of lactation received 4 treatments (duodenal infusions of 445±22.4 g/d of an EAA mixture complementing a low-protein diet in a 4×4 Latin square design with a period length of 1 wk). The control treatment provided a balanced supply (in % of PDIE) of 5.1% Arg, 5.2% Ile, and 5.9% Val, whereas in the 3 subsequent treatments of -Arg, -Ile, and -Val, the concentrations of these 3 EAA were reduced to 3.5, 4.1, and 4.5%, respectively. All treatments were made isonitrogenous and were balanced to provide 7 other EAA (Lys, Met, His, Leu, Phe, Thr, and Trp), according to the recommendations described in the literature. Combined, the diet and the infusions provided 14.3±0.1% crude protein on a dry matter basis, and 66.0±1.2 g of PDIE/Mcal of net energy for lactation. Neither dry matter intake (19.2 kg/d) nor milk yield (30.4±0.4 kg/d) was affected by treatments. The -Arg and -Ile treatments did not modify milk protein synthesis or the efficiency of N utilization. However, the -Val treatment decreased milk protein content by 4.9% and milk crude protein content by 4.3%, and tended to decrease the efficiency of N use for milk protein yield by 3.7% (compared with the control). These effects of Val were related to a decrease in the plasma concentration of Val as well as a trend toward decreasing plasma concentrations of Met, His, and the sum of all EAA and nonessential AA in the -Val treatment, which indicates a different utilization of all AA in response to the Val deficit. The deletion of Ile, compared with the deletion of Val, tended to decrease the milk protein-to-fat ratio by 3.8%. In conclusion, the supply of Arg at 3.5% of PDIE was not limiting for milk protein synthesis. The slight effect on the milk protein-to-fat ratio caused by decreasing the supply of Ile suggests a need to reevaluate the Ile requirement more precisely. A low Val supply could be limiting for milk protein synthesis, provided that the requirements of Lys, Met, and His are met.