Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization.

PMID 23177319


Suppressors of cytokine signaling (SOCS) are important regulators of lipopolysaccharide (LPS) and cytokine responses but their role in macrophage polarization is unknown. We have shown here that myeloid-restricted Socs3 deletion (Socs3(Lyz2cre)) resulted inxa0resistance to LPS-induced endotoxic shock, whereas Socs2(-/-) mice were highly susceptible. We observed striking bias toward M2-like macrophages in Socs3(Lyz2cre) mice, whereas the M1-like population was enriched in Socs2(-/-) mice. Adoptive transfer experiments showed that responses to endotoxic shock and polymicrobial sepsis were transferable and macrophage dependent. Critically, this dichotomous response was associated with enhanced regulatory T (Treg) cell recruitment by Socs3(Lyz2cre) cells, whereas Treg cell recruitment was absent in the presence of Socs2(-/-) macrophages. In addition, altered polarization coincided with enhanced interferon-gamma (IFN-γ)-induced signal transducer and activator of transcription-1 (STAT1) activation in Socs2(-/-) macrophages and enhanced interleukin-4 (IL-4) plus IL-13-induced STAT6 phosphorylation in Socs3(Lyz2cre) macrophages. SOCS, therefore, are essential controllers of macrophage polarization, regulating inflammatory responses.

Related Materials