EMAIL THIS PAGE TO A FRIEND

Bioscience, biotechnology, and biochemistry

Green tea extract (Camellia sinensis) fermented by Lactobacillus fermentum attenuates alcohol-induced liver damage.


PMID 23221715

Abstract

Here, the impact of an extract derived from green tea (Camellia sinensis) and fermentation with Lactobacilli fermentum strain OCS19 was explored with acute alcohol-induced liver damage. The study employed the HepG2 hepatic cell line and an in vivo murine model of liver damage. L. fermentum-fermented green tea extract (FGTE) was found to possess pronounced alcohol metabolizing enzyme activity. It significantly enhanced the cell viability of HepG2 cells following of them exposure, to ethanol (p<0.05) as compared with an extract derived from Hovenia dulcis, a positive control that is known for its action as an alcohol antagonist. Our in vivo studies indicated that prior administration of FGTE to alcohol-exposed mice significantly prevented subsequent increases in blood alcohol concentration (p<0.05), in addition to the induction of serum alanine aminotransferase (ALT) and triglycerides (p<0.05). Furthermore, the activity of hepatic alcohol dehydrogenase (ADH) and its mRNA expression level both increased in the livers of mice treated with FGTE, similarly to the H. dulcis-treated group. Taken together, these results may suggest that green tea extract coupled with L. fermentum fermentation attenuates the risk of ethanol-induced liver damage.