Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment

Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data.

PMID 23286325


Migration experiments with small sheets cut out from ovenable PET trays were performed in two-sided contact with 3% acetic acid as food simulant at various temperatures. The fraction of diffusible antimony (Sb) was estimated to be 62% in the PET sample under study. Apparent diffusion coefficients of Sb in PET trays were determined experimentally. Measurement of migration between 20 and 150°C yielded a linear Arrhenius plot over a wide temperature range from which the activation energy (E(a)) of 188 ± 36 kJ mol(-1) and the pre-exponential factor (D(0)) of 3.6 × 10(14) cm(2) s(-1) were determined for diffusing Sb species. E (a) was similar to previously reported values for PET bottles obtained with a different experimental approach. E (a) and D (0) were applied as model parameters in migration modelling software for predicting the Sb transfer in real food. Ready meals intended for preparation in a baking oven were heated in the PET trays under study and the actual Sb migration into the food phase was measured by isotope dilution ICP-MS. It was shown that the predictive modelling reproduces correctly experimental data.