The Journal of organic chemistry

Turning pyridoxine into a catalytic chain-breaking and hydroperoxide-decomposing antioxidant.

PMID 23316758


Vitamin B6 is involved in a variety of enzymatic transformations. Some recent findings also indicate an antioxidant role of the vitamin in biological systems. We set out to turn pyridoxine (1a) into a catalytic chain-breaking and hydroperoxide-decomposing antioxidant by replacing the 2-methyl substituent with an alkyltelluro group. Target molecules 12 and derivatives 14, 17, 18, and 20 thereof were accessed by subjecting suitably substituted 2-halopyridin-3-ols to aromatic substitution using sodium alkanetellurolates as nucleophiles and then LAH-reduction of ester groups. The novel pyridoxine compounds were found to inhibit azo-initiated peroxidation of linoleic acid an order of magnitude more efficiently than α-tocopherol in a water/chlorobenzene two-phase system containing N-acetylcysteine as a reducing agent in the aqueous phase. The most lipid-soluble pyridoxine derivative 20c was regenerable and could inhibit peroxidation for substantially longer time (>410 min) than α-tocopherol (87 min). The chalcogen-containing pyridoxines could also mimic the action of the glutathione peroxidase enzymes. Thus, compound 20a catalyzed reduction of hydrogen peroxide three times more efficiently than Ebselen in the presence of glutathione as a stoichiometric reducing agent.