Xenon and isoflurane reduce left ventricular remodeling after myocardial infarction in the rat.

PMID 23364599


Xenon and isoflurane are known to have cardioprotective properties. We tested the hypothesis that these anesthetics positively influence myocardial remodeling 28 days after experimental perioperative myocardial infarction and compared their effects. A total of 60 male Sprague-Dawley rats were subjected to 60 min of coronary artery occlusion and 120 min of reperfusion. Prior to ischemia, the animals were randomized for the different narcotic regimes (0.6 vol% isoflurane, 70 vol% xenon, or intraperitoneal injection of s-ketamine). Acute injury was quantified by echocardiography and troponin I. After 4 weeks, left ventricular function was assessed by conductance catheter to quantify hemodynamic compromise. Cardiac remodeling was characterized by quantification of dilatation, hypertrophy, fibrosis, capillary density, apoptosis, and expression of fetal genes (α/β myosin heavy chains, α-skeletal actin, periostin, and sarco/endoplasmic reticulum Ca2+-ATPase). Whereas xenon and isoflurane impeded the acute effects of ischemia-reperfusion on hemodynamics and myocardial injury at a comparable level, differences were found after 4 weeks. Xenon in contrast to isoflurane or ketamine anesthetized animals demonstrated a lower remodeling index (0.7 ± 0.1 vs. 0.9 ± 0.3 and 1.0 ± 0.3g/ml), better ejection fraction (62 ± 9 vs. 49 ± 7 and 35 ± 6%), and reduced expression of β-myosin heavy chain and periostin. The effects on hypertrophy, fibrosis, capillary density, and apoptosis were comparable. Compared to isoflurane and s-ketamine, xenon limited progressive adverse cardiac remodeling and contractile dysfunction 28 days after perioperative myocardial infarction.