Proceedings of the National Academy of Sciences of the United States of America

BIK1 interacts with PEPRs to mediate ethylene-induced immunity.

PMID 23431184


Plants have evolved intricate immune mechanisms to combat pathogen infection. Upon perception of pathogen-derived signals, plants accumulate defense hormones such as ethylene (ET), jasmonate, salicylate, and damage-associated molecular patterns to amplify immune responses. In particular, the Arabidopsis peptide Pep1 and its family members are thought to be damage-associated molecular patterns that trigger immunity through Pep1 receptor kinases PEPR1 and PEPR2. Here we show that PEPR1 specifically interacts with receptor-like cytoplasmic kinases botrytis-induced kinase 1 (BIK1) and PBS1-like 1 (PBL1) to mediate Pep1-induced defenses. In vitro and in vivo studies suggested that PEPR1, and likely PEPR2, directly phosphorylates BIK1 in response to Pep1 treatment. Surprisingly, the pepr1/pepr2 double-mutant seedlings displayed reduced in sensitivity to ET, as indicated by the elongated hypocotyls. ET-induced expression of defense genes and resistance to Botrytis cinerea were compromised in pepr1/pepr2 and bik1 mutants, reenforcing an important role of PEPRs and BIK1 in ET-mediated defense signaling. Pep treatment partially mimicked ET-induced seedling growth inhibition in a PEPR- and BIK1-dependent manner. Furthermore, both ET and Pep1 treatments induced BIK1 phosphorylation in a PEPR-dependent manner. However, the Pep1-induced BIK1 phosphorylation, seedling growth inhibition, and defense gene expression were independent of canonical ET signaling components. Together our results illustrate a mechanism by which ET and PEPR signaling pathways act in concert to amplify immune responses.