Journal of bacteriology

Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis.

PMID 23504010


Three evolutionarily distinct families of replicative DNA polymerases, designated polymerase B (Pol B), Pol C, and Pol D, have been identified. Members of the Pol B family are present in all three domains of life, whereas Pol C exists only in Bacteria and Pol D exists only in Archaea. Pol B enzymes replicate eukaryotic chromosomal DNA, and as members of the Pol B family are present in all Archaea, it has been assumed that Pol B enzymes also replicate archaeal genomes. Here we report the construction of Thermococcus kodakarensis strains with mutations that delete or inactivate key functions of Pol B. T. kodakarensis strains lacking Pol B had no detectable loss in viability and no growth defects or changes in spontaneous mutation frequency but had increased sensitivity to UV irradiation. In contrast, we were unable to introduce mutations that inactivated either of the genes encoding the two subunits of Pol D. The results reported establish that Pol D is sufficient for viability and genome replication in T. kodakarensis and argue that Pol D rather than Pol B is likely the replicative DNA polymerase in this archaeon. The majority of Archaea contain Pol D, and, as discussed, if Pol D is the predominant replicative polymerase in Archaea, this profoundly impacts hypotheses for the origin(s), evolution, and distribution of the different DNA replication enzymes and systems now employed in the three domains of life.