The Journal of neuroscience : the official journal of the Society for Neuroscience

Critical role of increased PTEN nuclear translocation in excitotoxic and ischemic neuronal injuries.

PMID 23637190


Stroke is the leading cause of disability in developed countries. However, no treatment is available beyond 3 h post-ictus. Here, we report that nuclear translocation of PTEN (phosphatase and tensin homolog deleted on chromosome TEN) is a delayed step causatively leading to excitotoxic (in vitro) and ischemic (in vivo) neuronal injuries. We found that excitotoxic stimulation of N-methyl-d-aspartate (NMDA) resulted in PTEN nuclear translocation in cultured neurons, a process requiring mono-ubiquitination at the lysine 13 residue (K13), as the translocation was prevented by mutation of K13 or a short interfering peptide (Tat-K13) that flanks the K13 residue. More importantly, using a rat model of focal ischemia, we demonstrated that systemic application of Tat-K13, even 6 h after stroke, not only reduced ischemia-induced PTEN nuclear translocation, but also strongly protected against ischemic brain damage. Our study suggests that inhibition of PTEN nuclear translocation may represent a novel after stroke therapy.