Environmental science and pollution research international

Adsorption of Cu(2+) and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes.

PMID 23666685


Corncob-derived char wastes (CCW) obtained from biomass conversion to syngas production through corncob steam gasification, which were often discarded, were utilized for preparation of activated carbon by calcination, and KOH and HNO3 activation treatments, on the view of environment protection and waste recycling. Their adsorption performance in the removal of heavy metal ions and dye molecules from wastewater was evaluated by using Cu(2+) and methyl orange (MO) as the model pollutant. The surface and structure characteristics of the CCW-based activated carbons (CACs) were investigated by N2 adsorption, CO2 adsorption, FT-IR, and He-TPD. The adsorption capacity varied with the activation methods of CACs and different initial solution concentrations, indicating that the adsorption behavior was influenced by not only the surface area and porosity but also the oxygen functional groups on the surface of the CACs. The equilibrium adsorption data were analyzed with the Langmuir, Freundlich, and Temkin isotherm models, and the adsorption kinetics was evaluated by the pseudo-first-order and pseudo-second-order models.

Related Materials