EMAIL THIS PAGE TO A FRIEND

Environmental science & technology

Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2.


PMID 23777272

Abstract

Research on microbial activity in acid mine drainage (AMD) has focused on transformations of iron and sulfur. However, carbon cycling, including formation of soluble microbial products (SMP) from cell growth and decay, is an important biogeochemical component of the AMD environment. Experiments were conducted to study the interaction of SMP with soluble ferric iron in acidic conditions, particularly the formation of complexes that inhibit its effectiveness as the primary oxidant of pyrite during AMD generation. The rate of pyrite oxidation by ferric iron in sterile suspensions at pH 1.8 was reduced by 87% in the presence of SMP produced from autoclaved cells at a ratio of 0.3 mg DOC per mg total soluble ferric iron. Inhibition of pyrite oxidation by SMP was shown to be comparable to, but weaker than, the effect of a chelating synthetic siderophore, DFAM. Two computational models incorporating SMP complexation were fitted to experimental results. Results suggest that bacterially produced organic matter can play a role in slowing pyrite oxidation.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

778117 Iron disulfide, powder, −325 mesh, 99.8% trace metals basis
FeS2