EMAIL THIS PAGE TO A FRIEND

Prikladnaia biokhimiia i mikrobiologiia

[Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced Crabtree effect].


PMID 23795471

Abstract

In this study, we constructed and characterized Escherichia coli strains deficient for mixed acid fermentation pathways, which are capable of rapid aerobic growth on glucose without pronounced bacterial Crabtree effect. The main pathways of production of acetic and lactic acids and ethanol in these strains were inactivated by a deletion of the ackA, pta, poxB, IdhA, and adhEgenes. The phosphoenolpyruvate-dependent phosphotransferase system of glucose transport and phosphorylation was inactivated in the strains by a deletion of the ptsG gene. The possibility of alternative transport and phosphorylation of the carbohydrate substrate was ensured in recombinants by constitutive expression of the galP and glk genes, which encode the low-affinity H+-symporter of D-galactose and glucokinase, respectively. SGMI.0DeltaptsG PtacgalP and SG M1.0DeltaptsG PIglk PtacgalP strains were capable of rapid aerobic growth in a minimal medium containing 2.0 and 10.0 g/l of glucose and secreted only small amounts of acetic acid and trace amounts of pyruvic acid.

Related Materials