EMAIL THIS PAGE TO A FRIEND

Molecular carcinogenesis

Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.


PMID 24114993

Abstract

In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development.