EMAIL THIS PAGE TO A FRIEND

Clinical science (London, England : 1979)

Involvement of proteinase activated receptor-2 in the vascular response to sphingosine 1-phosphate.


PMID 24131465

Abstract

S1P (sphingosine 1-phosphate) represents one of the key latest additions to the list of vasoactive substances that modulate vascular tone. PAR-2 (proteinase activated receptor-2) has been shown to be involved in cardiovascular function. In the present study, we investigated the involvement of PAR-2 in S1P-induced effect on vascular tone. The present study has been performed by using isolated mouse aortas. Both S1P and PAR-2 agonists induced endothelium-dependent vasorelaxation. L-NAME (N(G)-nitro-L-arginine methyl ester) and wortmannin abrogated the S1P-induced vasorelaxatioin, while significantly inhibiting the PAR-2-mediated effect. Either ENMD1068, a PAR-2 antagonist, or gabexate, a serine protease inhibitor, significantly inhibited S1P-induced vasorelaxation. Aortic tissues harvested from mice overexpressing PAR-2 displayed a significant increase in vascular response to S1P as opposed to PAR-2-null mice. Immunoprecipitation and immunofluorescence studies demonstrated that S1P(1) interacted with PAR-2 and co-localized with PAR-2 on the vascular endothelial surface. Furthermore, S1P administration to vascular tissues triggered PAR-2 mobilization from the plasma membrane to the perinuclear area; S1P-induced translocation of PAR-2 was abrogated when aortic rings were pre-treated with ENMD1068 or when caveolae dysfunction occurred. Similarly, experiments performed in cultured endothelial cells (human umbilical vein endothelial cells) showed a co-localization of S1P(1) and PAR2, as well as the ability of S1P to induce PAR-2 trafficking. Our results suggest that S1P induces endothelium-dependent vasorelaxation mainly through S1P(1) and involves PAR-2 transactivation.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

G2417
Gabexate mesylate, analytical standard, for drug analysis
C16H23N3O4 · CH4O3S