The Journal of biological chemistry

Regulation of 130-kDa smooth muscle myosin light chain kinase expression by an intronic CArG element.

PMID 24151072


The mylk1 gene encodes a 220-kDa nonmuscle myosin light chain kinase (MLCK), a 130-kDa smooth muscle MLCK (smMLCK), as well as the non-catalytic product telokin. Together, these proteins play critical roles in regulating smooth muscle contractility. Changes in their expression are associated with many pathological conditions; thus, it is important to understand the mechanisms regulating expression of mylk1 gene transcripts. Previously, we reported a highly conserved CArG box, which binds serum response factor, in intron 15 of mylk1. Because this CArG element is near the promoter that drives transcription of the 130-kDa smMLCK, we examined its role in regulating expression of this transcript. Results show that deletion of the intronic CArG region from a β-galactosidase reporter gene abolished transgene expression in mice in vivo. Deletion of the CArG region from the endogenous mylk1 gene, specifically in smooth muscle cells, decreased expression of the 130-kDa smMLCK by 40% without affecting expression of the 220-kDa MLCK or telokin. This reduction in 130-kDa smMLCK expression resulted in decreased phosphorylation of myosin light chains, attenuated smooth muscle contractility, and a 24% decrease in small intestine length that was associated with a significant reduction of Ki67-positive smooth muscle cells. Overall, these data show that the CArG element in intron 15 of the mylk1 gene is necessary for maximal expression of the 130-kDa smMLCK and that the 130-kDa smMLCK isoform is specifically required to regulate smooth muscle contractility and small intestine smooth muscle cell proliferation.