EMAIL THIS PAGE TO A FRIEND

Toxicology letters

2,3,7,8-Tetrachlorodibenzo-p-dioxin stimulates proliferation of HAPI microglia by affecting the Akt/GSK-3β/cyclin D1 signaling pathway.


PMID 24231000

Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that induces apoptosis of neurons and a pro-inflammatory response in microglial cells. First, we found that TCDD induced proliferation of HAPI microglial cells in a dose- and time-dependent manner. Flow cytometry analysis showed that this proliferation by TCDD was due to mainly enhancing the G1 to S phase transition. Next, it was found that TCDD treatment led to up-regulation of cyclin D1, which induces cell cycle progression from G1 to S phase, in a time-dependent manner. As for molecular mechanism, we revealed that TCDD was capable of inducing Akt phosphorylation and activation, resulting in phosphorylation and inactivation of glycogen synthase kinase-3β (GSK-3β). Inactivated GSK-3β attenuated proteasomal degradation of cyclin D1 by reducing Thr(286)-phosphorylated cyclin D1 levels. Moreover, inactivated GSK-3β increased cyclin D1 gene transcription by increasing its transcription factor β-catenin in the nucleus. Further, blockage of phosphoinositide 3-kinase/Akt kinase with their specific inhibitors, LY294002 and Akt 1/2 kinase inhibitor, significantly reduced TCDD-enhanced proliferation of HAPI microglial cells. In conclusion, TCDD stimulates proliferation of HAPI microglial cells by affecting the Akt/GSK-3β/cyclin D1 signaling pathway.