EMAIL THIS PAGE TO A FRIEND

Letters in applied microbiology

Rapid identification of Salmonella using Hektoen enteric agar and 16s ribosomal DNA probe-gold nanoparticle immunochromatography assay in clinical faecal specimens.


PMID 24286606

Abstract

A rapid identification of Salmonella, one of the most common foodborne pathogens worldwide, in clinical patients can enable better rational managements and prevent further outbreaks. The traditional immunochromatography using antibody-gold nanoparticles (Ab-AuNPs), such as the home pregnancy test, has been used for the Salmonella detection. In this study, we developed a new and rapid method using DNA probe-AuNPs for the detection of 16s ribosomal DNA of Salmonella. To evaluate the proposed method in clinical specimens, we performed a clinical test by identifying 159 stool samples on Hektoen agar containing black or crystalloid colonies using the method and the VITEK 2 system for confirmation. Eighty of the isolates were correctly identified as Salmonella to achieve 100% sensitivity. Seventy-five samples were correctly identified as non-Salmonella spp., but four were incorrectly identified as Salmonella. The specificity was 94·93%. The assay time is about 30 min after the DNA purification. The time-consuming and labour-intense biochemical tests can be replaced. We demonstrated that this assay is a rapid, convenient and cost-effective tool for Salmonella identification of clinical faecal samples, which is worth for further promotion and clinical use. This is the first application of using 16s ribosomal DNA probe-Au-NPs and immunochromatography on clinical samples. This is the first application of using 16s ribosomal DNA probe-gold nanoparticles and immunochromatography method on clinical samples with sensitivity 100% and specificity 94·93%. The assay time is about 30 min after the DNA purification. We find this assay a rapid, convenient, sensitive and inexpensive tool for Salmonella identification of clinical faecal samples, which is worth further promotion and clinical use and can replace the traditional time-consuming and labour-intense biochemical tests. The potential benefit of this approach is to develop a rapid point-of-care test that provides results while the patient is still at the doctors' office.