EMAIL THIS PAGE TO A FRIEND

Biochimica et biophysica acta

pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation.


PMID 24321504

Abstract

Here we show how the protein environment in terms of detergent concentration/protein aggregation state, affects the sensitivity to pH of isolated, native LHCII, in terms of chlorophyll fluorescence quenching. Three detergent concentrations (200, 20 and 6μM n-dodecyl β-d-maltoside) have been tested. It was found that at the detergent concentration of 6μM, low pH quenching of LHCII is close to the physiological response to lumen acidification possessing pK of 5.5. The analysis has been conducted both using arbitrary PAM fluorimetry measurements and chlorophyll fluorescence lifetime component analysis. The second led to the conclusion that the 3.5ns component lifetime corresponds to an unnatural state of LHCII, induced by the detergent used for solubilising the protein, whilst the 2ns component is rather the most representative lifetime component of the conformational state of LHCII in the natural thylakoid membrane environment when the non-photochemical quenching (NPQ) was absent. The 2ns component is related to a pre-aggregated LHCII that makes it more sensitive to pH than the trimeric LHCII with the dominating 3.5ns lifetime component. The pre-aggregated LHCII displayed both a faster response to protons and a shift in the pK for quenching to higher values, from 4.2 to 4.9. We concluded that environmental factors like lipids, zeaxanthin and PsbS protein that modulate NPQ in vivo could control the state of LHCII aggregation in the dark that makes it more or less sensitive to the lumen acidification. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C6144
Chlorophyll a, from Anacystis nidulans algae
C55H72MgN4O5
C5753
Chlorophyll a, from spinach
C55H72MgN4O5