Annals of the rheumatic diseases

Amelioration of experimental arthritis by stroke-induced immunosuppression is independent of Treg cell function.

PMID 24326006


Clinical evidence suggests that neurological lesions can protect from arthritis. Acute cerebral ischaemia induces severe immunosuppression, resulting in enhanced susceptibility to infections. We aimed to determine if stroke-induced immunosuppression can ameliorate arthritis and to delineate the immunological mechanisms involved. Unilateral cerebral ischaemia was induced in mice by occlusion of one middle cerebral artery (MCAO) at different time points after induction of G6PI-induced arthritis in mice. Clinical and histological signs of arthritis were assessed. Regulatory T cells were specifically depleted by injection of diphtheria toxin into transgenic DEREG mice. Immunological correlates of MCAO were determined by flow cytometry and serological methods. MCAO reduced the clinical and histological signs of arthritis significantly. To be effective, stroke had to be induced during the induction phase or the early clinical stage of arthritis. MCAO induced a global loss of leucocytes. Despite the reduced absolute number of lymphocytes, the functional differentiation of T helper cells into Th1/17 cells and the production of autoantibodies were unimpaired. Depletion experiments showed that regulatory T cells were dispensable for the protective effect of MCAO. MCAO ameliorates arthritis. The correlate of protection from arthritis is not the reduction of a particular pathogenic leucocyte subset or the preferential expansion or emergence of a protective cell population but the global reduction of leucocytes during arthritis.