Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference.

PMID 24429871


Increasing evidence points to the prelimbic (PL) and infralimbic (IL) cortices of the medial prefrontal cortex (mPFC) and their dopaminergic innervations subserving opposing roles in the regulation of instrumental behavior. However, it is at present unclear if they hold similar roles in the regulation of Pavlovian learning. The present study investigated the role of the dopaminergic innervations of the PL and IL in the modulation of Pavlovian appetitive cue and place conditioning, previously shown to be dependent on the basolateral amygdala and hippocampus, respectively. Rats received preconditioning microinfusions of D-amphetamine, cis-flupenthixol, or vehicle solution directly into the PL or IL and were trained to simultaneously acquire conditioned cue and place preference in a radial maze. Preconditioning blockade of dopamine neurotransmission in the PL and amphetamine microinfusions in the IL had the same effect of attenuating place conditioning. In contrast, place conditioning remained intact following preconditioning amphetamine microinfusions in the PL and dopamine receptor blockade in the IL. Instead, conditioned cue preference was attenuated following IL dopamine receptor blockade. These data indicate that PL dopaminergic mechanisms are critical for the acquisition of appetitive place learning, while IL dopamine may oppose the influence of PL dopamine upon hippocampal-dependent learning. Furthermore, they implicate a functional reciprocity between mPFC and associated subregions of the nucleus accumbens in the regulation of limbic information processing.