EMAIL THIS PAGE TO A FRIEND

Environmental science and pollution research international

Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation.


PMID 24532206

Abstract

This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO2 was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

677469
Titanium(IV) oxide, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
O2Ti
718467
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
O2Ti
774510
Titanium(IV) oxide, nanowires, diam. × L ~100 nm × 10 μm
O2Ti
774529
Titanium(IV) oxide, nanowires, diam. × L ~10 nm × 10 μm
O2Ti
637254
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
O2Ti
232033
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
O2Ti
248576
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
O2Ti
634662
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
O2Ti
700355
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticle, <250 nm particle size (DLS), paste, 53-57 wt. % in diethylene glycol monobutyl ether/ethylene glycol, 99.9% trace metals basis
O2Ti
700347
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
O2Ti
700339
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <100 nm particle size, dispersion, 48-52 wt. % in xylene, 99.9% trace metals basis
O2Ti
204730
Titanium(IV) oxide, rutile, 99.995% trace metals basis
O2Ti
204757
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
O2Ti
635057
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
O2Ti
635049
Titanium(IV) oxide, rutile, <100>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
O2Ti
635065
Titanium(IV) oxide, rutile, <110>, single crystal substrate, ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
O2Ti
637262
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
O2Ti
224227
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
O2Ti