The Journal of clinical endocrinology and metabolism

Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation.

PMID 24601692


Inactivating germline mutations of the probable tumor suppressor gene, armadillo repeat containing 5 (ARMC5), have recently been identified as a genetic cause of macronodular adrenal hyperplasia (MAH). We searched for ARMC5 mutations in a large cohort of patients with MAH. The clinical phenotype of patients with and without ARMC5 mutations was compared. Blood DNA from 34 MAH patients was genotyped using Sanger sequencing. Diurnal serum cortisol measurements, plasma ACTH levels, urinary steroids, 6-day Liddle's test, adrenal computed tomography, and weight of adrenal glands at adrenalectomy were assessed. Germline ARMC5 mutations were found in 15 of 34 patients (44.1%). In silico analysis of the mutations indicated that seven (20.6%) predicted major implications for gene function. Late-night cortisol levels were higher in patients with ARMC5-damaging mutations compared with those without and/or with nonpathogenic mutations (14.5 ± 5.6 vs 6.7 ± 4.3, P < .001). All patients carrying a pathogenic ARMC5 mutation had clinical Cushing's syndrome (seven of seven, 100%) compared with 14 of 27 (52%) of those without or with mutations that were predicted to be benign (P = .029). Repeated-measures analysis showed overall higher urinary 17-hydroxycorticosteroids and free cortisol values in the patients with ARMC5-damaging mutations during the 6-day Liddle's test (P = .0002). ARMC5 mutations are implicated in clinically severe Cushing's syndrome associated with MAH. Knowledge of a patient's ARMC5 status has important clinical implications for the diagnosis of Cushing's syndrome and genetic counseling of patients and their families.