Microcystin-LR stabilizes c-myc protein by inhibiting protein phosphatase 2A in HEK293 cells.

PMID 24607848


Microcystin-LR is the most toxic and the most frequently encountered toxin produced by the cyanobacteria in the contaminated aquatic environment. Previous studies have demonstrated that Microcystin-LR is a potential carcinogen for animals and humans, and the International Agency for Research on Cancer has classified Microcystin-LR as a possible human carcinogen. However, the precise molecular mechanisms of Microcystin-LR-induced carcinogenesis remain a mystery. C-myc is a proto-oncogene, abnormal expression of which contributes to the tumor development. Although several studies have demonstrated that Microcystin-LR could induce c-myc expression at the transcriptional level, the exact connection between Microcystin-LR toxicity and c-myc response remains unclear. In this study, we showed that the c-myc protein increased in HEK293 cells after exposure to Microcystin-LR. Coexpression of protein phosphatase 2A and two stable c-myc protein point mutants (either c-myc(T58A) or c-myc(S62A)) showed that Microcystin-LR increased c-myc protein level mainly through inhibiting protein phosphatase 2A activity which altered the phosphorylation status of serine 62 on c-myc. In addition, we also showed that Microcystin-LR could increase c-myc promoter activity as revealed by luciferase reporter assay. And the TATA box for P1 promoter of c-myc might be involved. Our results suggested that Microcystin-LR can stimulate c-myc transcription and stabilize c-myc protein, which might contribute to hepatic tumorigenesis in animals and humans.