EMAIL THIS PAGE TO A FRIEND

Archives of biochemistry and biophysics

Reduced cellular Mg²⁺ content enhances hexose 6-phosphate dehydrogenase activity and expression in HepG2 and HL-60 cells.


PMID 24631573

Abstract

We have reported that Mg(2+) dynamically regulates glucose 6-phosphate entry into the endoplasmic reticulum and its hydrolysis by the glucose 6-phosphatase in liver cells. In the present study, we report that by modulating glucose 6-phosphate entry into the endoplasmic reticulum of HepG2 cells, Mg(2+) also regulates the oxidation of this substrate via hexose 6-phosphate dehydrogenase (H6PD). This regulatory effect is dynamic as glucose 6-phosphate entry and oxidation can be rapidly down-regulated by the addition of exogenous Mg(2+). In addition, HepG2 cells growing in low Mg(2+) show a marked increase in hexose 6-phosphate dehydrogenase mRNA and protein expression. Metabolically, these effects on hexose 6-phosphate dehydrogenase are important as this enzyme increases intra-reticular NADPH production, which favors fatty acid and cholesterol synthesis. Similar effects of Mg(2+) were observed in HL-60 cells. These and previously published results suggest that in an hepatocyte culture model changes in cytoplasmic Mg(2+) content regulates glucose 6-phosphate utilization via glucose 6 phosphatase and hexose-6 phosphate dehydrogenase in alternative to glycolysis and glycogen synthesis. This alternative regulation might be of relevance in the transition from fed to fasted state.