Applied microbiology and biotechnology

Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans.

PMID 24664446


The filamentous fungus Talaromyces versatilis produces a wide range of cellulolytic and hemicellulolytic enzymes such as xylanases. The recent accessibility to the T. versatilis genome allows identifying two new genes, xynE and xynF, encoding glycoside-hydrolases from family GH11. Both genes were cloned and expressed in the methylotrophic yeast Pichia pastoris in order to compare these new xylanases with two other GH11 xylanases from T. versatilis (XynB and XynC) that were previously reported. High-level expression of recombinant enzymes was obtained for the four enzymes that were purified to homogeneity. The XynB, XynC, XynE and XynF enzymes have molecular masses of 34, 22, 45 and 23 kDa, an optimal pH between 3.5 and 4.5 and an optimal temperature between 50 °C and 60 °C. Interestingly, XynF has shown the best thermal stability at 50 °C for at least 180 min with a weak loss of activity. The four xylanases catalysed hydrolysis of low viscosity arabinoxylan (LVAX) with K m(app) between 11.5 and 23.0 mg.mL(-1) and k cat/K m(app) 170 and 3,963 s(-1) mg(-1).mL. Further investigations on the rate and pattern of hydrolysis of the four enzymes on LVAX showed the predominant production of xylose, xylobiose and some (arabino)xylo-oligosaccharides as end products. The initial rate data from the hydrolysis of short xylo-oligosaccharides indicated that the catalytic efficiency increased with increasing degree of polymerisation of oligomer up to 6, suggesting that the specificity region of XynE and XynF spans at least six xylose residues. Because of their attractive properties, T. versatilis xylanases might be considered for biotechnological applications.