The Journal of neuroscience : the official journal of the Society for Neuroscience

Unlearning: NMDA receptor-mediated metaplasticity in the anterior piriform cortex following early odor preference training in rats.

PMID 24719094


Here we demonstrate metaplastic effect of a change in NMDA receptor (NMDAR) number in the anterior piriform cortex (aPC) in rat induced by a 10 min pairing of peppermint odor + stroking, which significantly modifies later learning and memory. Using isolated synaptoneurosomes, we found NR1 receptor downregulation 3 h after training and upregulation at 24 h. Consistent with the NR1 pattern, the NMDAR-mediated EPSP was smaller at 3 h and larger at 24 h. Subunit composition was unchanged. Whereas LTP was reduced at both times by training, LTD was facilitated only at 3 h. Behaviorally, pups, given a pairing of peppermint + stroking 3 h after an initial peppermint + stroking training, lost the normally acquired peppermint preference 24 h later. To probe the pathway specificity of this unlearning effect, pups were trained first with peppermint and then, at 3 h, given a second training with peppermint or vanillin. Pups given peppermint training at both times lost the learned peppermint preference. Pups given vanillin retraining at 3 h had normal peppermint preference. Downregulating NR1 with siRNA prevented odor preference learning. Finally, the NMDAR antagonist MK-801 blocked the LTD facilitation seen 3 h after training, and giving MK-801 before the second peppermint training trial eliminated the loss of peppermint odor preference. A training-associated reduction in NMDARs facilitates LTD 3 h later; training at the time of LTD facilitation reverses an LTP-dependent odor preference. Experience-dependent, pathway-specific metaplastic effects in a cortical structure have broad implications for the optimal spacing of learning experiences.

Related Materials

Product #



Molecular Formula

Add to Cart

(+)-MK-801 hydrogen maleate, powder
C16H15N · C4H4O4