EMAIL THIS PAGE TO A FRIEND

Journal of nanoscience and nanotechnology

Preparation of magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase.


PMID 24734736

Abstract

Magnetic Fe3O4 nanoparticles were prepared with coprecipitatation method and covered with SiO2 to form the core-shell Fe3O4@SiO2 nanoparticles. Then the nanoparticles were modified with glutaradehyde for functionalization of the surface to aldehyde groups. The transmission electron microscopy confirmed the core-shell structure and revealed that the size of the nanoparticles was around 10 nm. It was observed that the lipase was immobilized on the nanoparticles successfully from the Fourier transform infrared spectra. The immobilized lipase on Fe3O4@SiO2 nanoparticles was characterized and compared to free enzyme. There are no significant differences observed in the optimal pH, temperature and Km before and after immobilization. However, the immobilized lipase displayed higher relative activity in the range of pH from 7.0 to 9.5. Compare with the free enzyme, the immobilized one showed higher thermal stability at temperature range from 30 to 70 degrees C, especially at high temperature. The relative activity of immobilized enzyme was 5.8 fold of the free lipase at 70 degrees C after 10 h incubation. Thus, the prepared lipase was proved to have the advantages like higher relative activity, better stability, broader pH range and easy to recovery. These results suggest that immobilization of lipase on Fe3O4@SiO2 nanoparticles has the potential industrial applications.