EMAIL THIS PAGE TO A FRIEND

Neuropathology : official journal of the Japanese Society of Neuropathology

MicroRNA-221 targeting PI3-K/Akt signaling axis induces cell proliferation and BCNU resistance in human glioblastoma.


PMID 24780067

Abstract

MicroRNAs (miRNAs) are short regulatory RNAs that negatively regulate protein biosynthesis at the post-transcriptional level and participate in the pathogenesis of different types of human cancers, including glioblastoma. In particular, the levels of miRNA-221 are overexpressed in many cancers and miRNA-221 exerts its functions as an oncogene. Nevertheless, the roles of miRNA-221 in carmustine (BCNU)-resistant glioma cells have not been totally elucidated. In the present study, we explored the effects of miRNA-221 on BCNU-resistant glioma cells and the possible molecular mechanisms by which miRNA-221 mediated the cell proliferation, survival, apoptosis and BCNU resistance were investigated. We found that miR-221 was overexpressed in glioma cells, including BCNU-resistant cells. Moreover, we found that miR-221 regulated cell proliferation and BCNU resistance in glioma cells. Overexpression of miR-221 led to cell survival and BCNU resistance and reduced cell apoptosis induced by BCNU, whereas knockdown of miR-221 inhibited cell proliferation and prompted BCNU sensitivity and cell apoptosis. Further investigation revealed that miR-221 down-regulated PTEN and activated Akt, which resulted in cell survival and BCNU resistance. Overexpression of PTEN lacking 3'UTR or PI3-K/Akt specific inhibitor wortmannin attenuated miR-221-mediated BCNU resistance and prompted cell apoptosis. We propose that miR-221 regulated cell proliferation and BCNU resistance in glioma cells by targeting PI3-K/PTEN/Akt signaling axis. Our findings may provide a new potential therapeutic target for treatment of glioblastoma.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C0400
Carmustine, ≥98%
C5H9Cl2N3O2