Human reproduction (Oxford, England)

Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men.

PMID 24812311


Is consumption of sugar-sweetened beverages (SSB) associated with semen quality? Higher consumption of SSB was associated with lower sperm motility among healthy, young men. The existing literature on the potential role of SSBs on male reproductive function is scarce and primarily focused on the relation between caffeinated beverages and semen quality. However, a rodent model suggests that SSBs may hamper male fertility. The Rochester Young Men's Study; a cross-sectional study of 189 healthy young men carried out at the University of Rochester during 2009-2010. Men aged 18-22 years provided semen and blood samples, underwent a physical examination and completed a previously validated food frequency questionnaire (FFQ). Linear regression was used to analyze the association of SSBs with sperm parameters and reproductive hormone levels while adjusting for potential confounders. SSB intake was inversely related to progressive sperm motility. Men in the highest quartile of SSB intake (≥1.3 serving/day) had 9.8 (95% CI: 1.9,17.8) percentage units lower progressive sperm motility than men in the lowest quartile of intake (<0.2 serving/day) (P, trend = 0.03). This association was stronger among lean men (P, trend = 0.005) but absent among overweight or obese men (P, trend = 0.98). SSB intake was unrelated to other semen quality parameters or reproductive hormones levels. As in all cross-sectional studies, causal inference is limited. An additional problem is that only single semen sample was obtained from each subject. To our knowledge, this is the first report on the relation between SSB intake and low semen quality beyond the contribution of caffeinated beverages. While our findings are in agreement with recent experimental data in rodents, more studies are required to draw conclusions on the relation of SSB with semen quality or male infertility. Supported by the European Union Seventh Framework Program (Environment), 'Developmental Effects of Environment on Reproductive Health' (DEER) grant 212844. Grant P30 DK046200 and Ruth L. Kirschstein National Research Service Award T32 DK007703-16 and T32HD060454 from the National Institutes of Health. None of the authors has any conflicts of interest to declare.