Acta physiologica (Oxford, England)

Alterations of calcium homoeostasis in cultured rat astrocytes evoked by bioactive sphingolipids.

PMID 24825022


In the brain, alterations in sphingolipid metabolism contribute to several neurological disorders; however, their effect on astrocytes is largely unknown. Here, we identified bioactive sphingolipids that affect intracellular free calcium concentration ([Ca(2+)]i), mobility of peptidergic secretory vesicles, signalling pathways involved in alterations of calcium homoeostasis and explored the relationship between the stimulus-evoked increase in [Ca(2+)]i and attenuation of vesicle mobility. Confocal time-lapse images were acquired to explore [Ca(2+)]i signals, the mobility of fluorescently tagged peptidergic vesicles and the structural integrity of the microtubules and actin filaments before and after the addition of exogenous sphingolipids to astrocytes. Fingolimod (FTY720), a recently introduced therapeutic for multiple sclerosis, and sphingosine, a releasable constituent of membrane sphingolipids, evoked long-lasting increases in [Ca(2+)]i in the presence and absence of extracellular Ca(2+); the evoked responses were diminished in the absence of extracellular Ca(2+). Activation of phospholipase C and inositol-1,4,5-triphosphate receptors was necessary and sufficient to evoke increases in [Ca(2+)]i as revealed by the pharmacologic inhibitors; Ca(2+) flux from the extracellular space intensified these responses several fold. The lipid-evoked increases in [Ca(2+)]i coincided with the attenuated vesicle mobility. High and positive correlation between increase in [Ca(2+)]i and decrease in peptidergic vesicle mobility was confirmed independently in astrocytes exposed to evoked, transient Ca(2+) signalling triggered by purinergic and glutamatergic stimulation. Exogenously added cell-permeable sphingosine-like lipids exert complex, Ca(2+)-dependent effects on astrocytes and likely alter their homeostatic function in vivo.