Biochemical and biophysical research communications

Structural characterization and interaction of periostin and bone morphogenetic protein for regulation of collagen cross-linking.

PMID 24858685


Periostin appears to be a unique extracellular protein secreted by fibroblasts that is upregulated following injury to the heart or changes in the environment. Periostin has the ability to associate with other critical extracellular matrix (ECM) regulators such as TGF-β, tenascin, and fibronectin, and is a critical regulator of fibrosis that functions by altering the deposition and attachment of collagen. Periostin is known to be highly expressed in carcinoma cells, but not in normal breast tissues. The protein has a structural similarity to insect fasciclin-1 (Fas 1) and can be induced by transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP)-2. To investigate the molecular interaction of periostin and bone morphogenetic protein, we modeled these three-dimensional structures and their binding sites. We demonstrated direct interaction between periostin and BMP1/2 in vitro using several biochemical and biophysical assays. We found that the structures of the first, second, and fourth Fas1 domains in periostin are similar to that of the fourth Fas 1 domain of TGFBIp. However, the structure of the third Fas 1 domain in periostin is different from those of the first, second, and fourth Fas1 domains, while it is similar to the NMR structure of Fasciclin-like protein from Rhodobacter sphaeroides. These results will useful in further functional analysis of the interaction of periostin and bone morphogenetic protein.