EMAIL THIS PAGE TO A FRIEND

American journal of respiratory cell and molecular biology

Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis.


PMID 24885373

Abstract

Circulating fibrocytes have been reported to migrate into the injured lungs, and contribute to fibrogenesis via CXCL12-CXCR4 axis. In contrast, we report that imatinib mesylate prevented bleomycin (BLM)-induced pulmonary fibrosis in mice by inhibiting platelet-derived growth factor receptor (PDGFR), even when it was administered only in the early phase. The goal of this study was to test the hypothesis that platelet-derived growth factor (PDGF) might directly contribute to the migration of fibrocytes to the injured lungs. PDGFR expression in fibrocytes was examined by flow cytometry and RT-PCR. The migration of fibrocytes was evaluated by using a chemotaxis assay for human fibrocytes isolated from peripheral blood. The numbers of fibrocytes triple-stained for CD45, collagen-1, and CXCR4 were also examined in lung digests of BLM-treated mice. PDGFR mRNA levels in fibrocytes isolated from patients with idiopathic pulmonary fibrosis were investigated by real-time PCR. Fibrocytes expressed both PDGFR-α and -β, and migrated in response to PDGFs. PDGFR inhibitors (imatinib, PDGFR-blocking antibodies) suppressed fibrocyte migration in vitro, and reduced the number of fibrocytes in the lungs of BLM-treated mice. PDGF-BB was a stronger chemoattractant than the other PDGFs in vitro, and anti-PDGFR-β-blocking antibody decreased the numbers of fibrocytes in the lungs compared with anti-PDGFR-α antibody in vivo. Marked expression of PDGFR-β was observed in fibrocytes from patients with idiopathic pulmonary fibrosis compared with healthy subjects. These results suggest that PDGF directly functions as a strong chemoattractant for fibrocytes. In particular, the PDGF-BB-PDGFR-β biological axis might play a critical role in fibrocyte migration into the fibrotic lungs.