Journal of biomolecular structure & dynamics

Complex disruption effect of natural polyphenols on Bcl-2-Bax: molecular dynamics simulation and essential dynamics study.

PMID 24903407


Apoptosis (programmed cell death) is a process by which cells died after completing physiological function or after a severe genetic damage. Apoptosis is mainly regulated by the Bcl-2 family of proteins. Anti apoptotic protein Bcl-2 prevents the Bax activation/oligomerization to form heterodimer which is responsible for release of the cytochrome c from mitochondria to the cytosol in response to death signal. Quercetin and taxifolin (natural polyphenols) efficiently bound to hydrophobic groove of Bcl-2 and altered the structure by inducing conformational changes. Taxifolin was found more efficient when compared to quercetin in terms of interaction energy and collapse of hydrophobic groove. Taxifolin and quercetin were found to dissociate the Bcl-2-Bax complex during 12 ns MD simulation. The effect of taxifolin and quercetin was, further validated by the MD simulation of ligand-unbound Bcl-2-Bax which showed stability during the simulation. Obatoclax (an inhibitor of Bcl-2) had no significant dissociation effect on Bcl-2-Bax during simulation which favored the previous experimental results and disruption effect of taxifolin and quercetin.

Related Materials