EMAIL THIS PAGE TO A FRIEND

Journal of cellular biochemistry

Expression of survivin and p53 modulates honokiol-induced apoptosis in colorectal cancer cells.


PMID 24905183

Abstract

Honokiol is a small biphenolic compound, which exerts antitumor activities; however, the precise mechanism of honokiol-induced apoptosis in the human colorectal cancer cells remains unclear. Here, we show that survivin and p53 display the opposite role on the regulation of honokiol-induced apoptosis in the human colorectal cancer cells. Honokiol induced the cell death and apoptosis in various colorectal cancer cell lines. Moreover, honokiol elicited the extrinsic death receptor pathway of DR5 and caspase 8 and the intrinsic pathway of caspase 9. The common intrinsic and extrinsic downstream targets of activated caspase 3 and PARP protein cleavage were induced by honokiol. Interestingly, honokiol reduced anti-apoptotic survivin protein and gene expression. Transfection with a green fluorescent protein (GFP)-survivin-expressed vector increased the colorectal cancer cell viability and resisted the honokiol-induced apoptosis. Meantime, honokiol increased total p53 and the phosphorylated p53 proteins at Ser15 and Ser46. The p53-wild type colorectal cancer cells were exhibited greater cytotoxicity, apoptosis and survivin reduction than the p53-null cancer cells after treatment with honokiol. Together, these findings demonstrate that the existence of survivin and p53 can modulate the honokiol-induced apoptosis in the human colorectal cancer cells.