Molecular and cellular biochemistry

Crosstalk between TGF-β1 and CXCR3 signaling during urethral fibrosis.

PMID 24907118


Urethral fibrosis is an important pathological feature of urethral stricture. TGF-β1 and CXC chemokine receptor 3 (CXCR3) signaling have been reported as the critical pathways involved in the pathology of fibrosis. Here, we collected the urine samples from the patients with recurring urethral stricture, recurring stricture treated by cystostomy, and age- and gender-matched healthy people. ELISA detection revealed that TGF-β1 level was significantly up-regulated for the urethral stricture patients. By contrast, flow cytometry, real-time PCR detection, and immunofluoresecent staining showed that urethral stricture resulted in decreased expression of CXCR3. TGF-β1 treatment could increase cell proliferation and migration ability of urethra fibroblasts, whereas IP-10/CXCR3 signaling showed the opposite effect. Further, we found a crosstalk between TGF-β1 and CXCR3 signaling in the regulation of urethral fibrosis. Thus, pharmacological intervention of TGF-β1 or CXCR3 signaling has a potential as the therapeutic target for the prevention of urethral fibrosis.