Clinical and experimental pharmacology & physiology

p27(kip1) deficiency accelerates dentin and alveolar bone formation.

PMID 24916068


To assess the role of p27(kip1) in regulating dental formation and alveolar bone development, we compared the teeth and mandible phenotypes of homozygous p27(kip1) -deficient (p27(-/-) ) mice with their wild-type littermates at 2xa0weeks of age. At 2xa0weeks of age, dental mineral density, dental volume and dentin sialoprotein-immunopositive areas were increased significantly, whereas the predentin areaxa0:xa0total dentin area and biglycan-immunopositive areaxa0:xa0dentin area ratios were decreased significantly in p27(-/-) mice compared with their wild-type (WT) littermates. Mandible mineral density, cortical thickness, alveolar bone volume, type I collagen and osterix-immunopositive areas, osteoblast number and activity and mRNA expression of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin and bone morphogenetic protein (bmp2) were all significantly increased in the mandibles, as was the number and surface of tartrate-resistant acid phosphatase-positive osteoclasts in the alveolar bone of p27(-/-) mice compared with their WT littermates. Furthermore, the percentage of proliferating cell nuclear antigen-positive cells in Hertwig's epithelial root sheath and protein expression of cyclin E and cyclin-dependent kinase 2 were increased significantly in p27(-/-) mice relative to their WT littermates. The results from this study indicate that p27 plays a negative regulatory role in dentin formation and alveolar bone development.