Neurological research

Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats.

PMID 24919714


Transplanted human umbilical cord mesenchymal stem cells (hUC-MSCs) have exhibited considerable therapeutic potential for traumatic brain injury (TBI). However, how hUC-MSCs migrating to the injury region and the mechanism of hUC-MSCs promoting functional recovery after TBI are still unclear. In this study, we investigated whether stromal cell-derived factor-1 (SDF-1) was involved in the hUC-MSCs migration and the possible mechanisms that might be involved in the beneficial effect on functional recovery. In vitro experiments demonstrated that SDF-1 induces a concentration-dependent migration of hUC-MSCs. Furthermore, pre-treatment with the CXCR4-specific antagonist AMD3100 significantly prevented the migration of hUC-MSCs in vitro. We found that the expression of SDF-1 increased significantly around the damaged area. Transplanted hUC-MSCs were localized to regions where SDF-1 was highly expressed. Additionally, our results showed that hUC-MSCs-treated animals showed significantly improved functional recovery compared with controls. In hUC-MSCs-transplanted group, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells were decreased and BrdU-positive cells were significantly increased compared with control group, more of BrdU-positive cells co-localized with GFAP. These suggest that SDF-1 plays an important role in the migration of hUC-MSCs to the damaged area and hUC-MSCs are beneficial for functional recovery after TBI.