EMAIL THIS PAGE TO A FRIEND

Environmental technology

Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor.


PMID 24956801

Abstract

This study focuses on the performance of a submerged membrane photocatalytic reactor for the removal of 17beta-oestradiol (E2) in the presence of humic acid (HA). In addition to the impact of operating parameters, such as membrane pore size, ultraviolet (UV) intensity and hydraulic retention time (HRT), the influence of long-term operation was also assessed by advanced characterization of the fouling layer formed on the membrane. The tighter (0.04 microm) hollow fibre polyvinylydene fluoride (PVDF) membrane was found to exhibit not only higher HA removal than the (0.2 microm) module (85% and 75%, respectively), but also greater transmembrane pressure (TMP) values and higher irreversible fouling. Long-term operation conditions have been simulated by conducting an ageing catalyst process and demonstrated a decrease in performance obtained with time. The artificially aged TiO2 resulted in higher TMP values and lower HA removals (about 10-20% decrease) compared with the non-aged catalyst. For E2 removal in the presence of HA, the passive adsorption of the oestrogen onto the organic matter was found to be significant (40% of the E2 adsorbed after I h), demonstrating the importance of the nature of the water matrix for this type of treatment process. An increase in the UV light intensity was observed to favour the E2 elimination, leading to more than 90% removal when using 64 W combined with PVDF membrane and an HRT of 3 h.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

E-060
17β-Estradiol solution, 1.0 mg/mL in acetonitrile, ampule of 1 mL, certified reference material
C18H24O2
E1620000
Estradiol hemihydrate, European Pharmacopoeia (EP) Reference Standard
C18H24O2 · 0.5H2O
IRMM531A
Titanium, IRMM® certified Reference Material, 0.1 mm foil
Ti
IRMM531B
Titanium, IRMM® certified Reference Material, 0.5 mm foil
Ti
IRMM531C
Titanium, IRMM® certified Reference Material, 0.5 mm wire
Ti
305812
Titanium, crystalline, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Ti
433667
Titanium, evaporation slug, diam. × L 6.3 mm × 6.3 mm, ≥99.99% trace metals basis
Ti
369489
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Ti
348805
Titanium, foil, thickness 0.5 mm, 99.99% trace metals basis
Ti
267481
Titanium, foil, thickness 0.25 mm, 99.99% trace metals basis
Ti
267503
Titanium, foil, thickness 0.25 mm, 99.7% trace metals basis
Ti
460397
Titanium, foil, thickness 0.127 mm, ≥99.99% trace metals basis
Ti
348791
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Ti
348813
Titanium, foil, thickness 0.1 mm, 99.99% trace metals basis
Ti
348821
Titanium, foil, thickness 0.05 mm, 99.99% trace metals basis
Ti
348848
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Ti
268496
Titanium, powder, −100 mesh, 99.7% trace metals basis
Ti
366994
Titanium, powder, <45 μm avg. part. size, 99.98% trace metals basis
Ti
513415
Titanium, nanoparticles, dispersion, <100 nm particle size, in mineral oil, 98.5% trace metals basis
Ti
347132
Titanium, rod, diam. 6.35 mm, 99.99% trace metals basis
Ti
268526
Titanium, sponge, 3-19 mm, 99.5% trace metals basis
Ti
348856
Titanium, wire, diam. 2.0 mm, 99.99% trace metals basis
Ti
266035
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Ti
267902
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Ti
348864
Titanium, wire, diam. 0.5 mm, 99.99% trace metals basis
Ti
460400
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Ti
266019
Titanium, wire, diam. 0.127 mm, 99.99% trace metals basis
Ti
749044
Titanium, sputtering target, diam. × thickness 3.00 in. × 0.125 in., 99.995% trace metals basis
Ti
767506
Titanium, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis
Ti
GF57414179
Titanium, rod, 1000mm, diameter 6mm, annealed, 99.6+%
Ti