EMAIL THIS PAGE TO A FRIEND

Journal of the American Society for Mass Spectrometry

A distonic radical-ion for detection of traces of adventitious molecular oxygen (O2) in collision gases used in tandem mass spectrometers.


PMID 25001381

Abstract

We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [(•)SO(2)(CH(3)); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O(2)) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

32097
Etoricoxib, VETRANAL, analytical standard
C18H15ClN2O2S