PloS one

A subset of circulating blood mycobacteria-specific CD4 T cells can predict the time to Mycobacterium tuberculosis sputum culture conversion.

PMID 25048802


We investigated 18 HIV-negative patients with MDR-TB for M. tuberculosis (Mtb)- and PPD-specific CD4 T cell responses and followed them over 6 months of drug therapy. Twelve of these patients were sputum culture (SC) positive and six patients were SC negative upon enrollment. Our aim was to identify a subset of mycobacteria-specific CD4 T cells that would predict time to culture conversion. The total frequency of mycobacteria-specific CD4 T cells at baseline could not distinguish patients showing positive or negative SC. However, a greater proportion of late-differentiated (LD) Mtb- and PPD-specific memory CD4 T cells was found in SC positive patients than in those who were SC negative (p = 0.004 and p = 0.0012, respectively). Similarly, a higher co-expression of HLA-DR+ Ki67+ on Mtb- and PPD-specific CD4 T cells could also discriminate between sputum SC positive versus SC negative (p = 0.004 and p = 0.001, respectively). Receiver operating characteristic (ROC) analysis revealed that baseline levels of Ki67+ HLA-DR+ Mtb- and PPD-specific CD4 T cells were predictive of the time to sputum culture conversion, with area-under-the-curve of 0.8 (p = 0.027). Upon treatment, there was a significant decline of these Ki67+ HLA-DR+ T cell populations in the first 2 months, with a progressive increase in mycobacteria-specific polyfunctional IFNγ+ IL2+ TNFα+ CD4 T cells over 6 months. Thus, a subset of activated and proliferating mycobacterial-specific CD4 T cells (Ki67+ HLA-DR+) may provide a valuable marker in peripheral blood that predicts time to sputum culture conversion in TB patients at the start of treatment.