Cancer letters

The p38 MAPK-regulated PKD1/CREB/Bcl-2 pathway contributes to selenite-induced colorectal cancer cell apoptosis in vitro and in vivo.

PMID 25128071


Supranutritional selenite has anti-cancer therapeutic effects in vivo; however, the detailed mechanisms underlying these effects are not clearly understood. Further studies would broaden our understanding of the anti-cancer effects of this compound and provide a theoretical basis for its clinical application. In this study, we primarily found that selenite exposure inhibited phosphorylation of cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB), leading to suppression of Bcl-2 in HCT116 and SW480 colorectal cancer (CRC) cells. Moreover, the selenite-induced inhibitory effect on PKD1 activation was involved in suppression of the CREB signalling pathway. Additionally, we discovered that selenite treatment can upregulate p38 MAPK phosphorylation, which results in inhibition of the PKD1/CREB/Bcl-2 survival pathway and triggers apoptosis. Finally, we established a colorectal cancer xenograft model and found that selenite treatment markedly inhibits tumour growth through the MAPK/PKD1/CREB/Bcl-2 pathway in vivo. Our results demonstrated that a supranutritional dose of selenite induced CRC cell apoptosis through inhibition of the PKD1/CREB/Bcl-2 axis both in vitro and in vivo.