EMAIL THIS PAGE TO A FRIEND

Oncogene

CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress.


PMID 25132270

Abstract

Checkpoint kinase 1 (CHK1) is a key component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-dependent DNA damage response pathway that protect cells from replication stress, a cell intrinsic phenomenon enhanced by oncogenic transformation. Here, we show that CHK1 is overexpressed and hyperactivated in T-cell acute lymphoblastic leukemia (T-ALL). CHEK1 mRNA is highly abundant in patients of the proliferative T-ALL subgroup and leukemia cells exhibit constitutively elevated levels of the replication stress marker phospho-RPA32 and the DNA damage marker γH2AX. Importantly, pharmacologic inhibition of CHK1 using PF-004777736 or CHK1 short hairpin RNA-mediated silencing impairs T-ALL cell proliferation and viability. CHK1 inactivation results in the accumulation of cells with incompletely replicated DNA, ensuing DNA damage, ATM/CHK2 activation and subsequent ATM- and caspase-3-dependent apoptosis. In contrast to normal thymocytes, primary T-ALL cells are sensitive to therapeutic doses of PF-004777736, even in the presence of stromal or interleukin-7 survival signals. Moreover, CHK1 inhibition significantly delays in vivo growth of xenotransplanted T-ALL tumors. We conclude that CHK1 is critical for T-ALL proliferation and viability by downmodulating replication stress and preventing ATM/caspase-3-dependent cell death. Pharmacologic inhibition of CHK1 may be a promising therapeutic alternative for T-ALL treatment.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

EHU056141 MISSION® esiRNA, esiRNA human CHEK1 (esiRNA1)