EMAIL THIS PAGE TO A FRIEND

Journal of agricultural and food chemistry

Partial least-squares-discriminant analysis differentiating Chinese wolfberries by UPLC-MS and flow injection mass spectrometric (FIMS) fingerprints.


PMID 25152955

Abstract

Lycium barbarum L. fruits (Chinese wolfberries) were differentiated for their cultivation locations and the cultivars by ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS) and flow injection mass spectrometric (FIMS) fingerprinting techniques combined with chemometrics analyses. The partial least-squares-discriminant analysis (PLS-DA) was applied to the data projection and supervised learning with validation. The samples formed clusters in the projected data. The prediction accuracies by PLS-DA with bootstrapped Latin partition validation were greater than 90% for all models. The chemical profiles of Chinese wolfberries were also obtained. The differentiation techniques might be utilized for Chinese wolfberry authentication.