Biochemical and biophysical research communications

Chlamydia pneumoniae harness host NLRP3 inflammasome-mediated caspase-1 activation for optimal intracellular growth in murine macrophages.

PMID 25193701


Chlamydia pneumoniae is an obligate intracellular pathogen that replicates within a vacuole and acquires host cell nutrients. We show that C. pneumoniae utilizes host innate immune signaling NLRP3/ASC/caspase-1 inflammasome for intracellular growth. Bone marrow-derived macrophages (BMMs) secreted mature interleukin-1β upon infection with C. pneumoniae depending on the NLRP3 inflammasome activation. Intracellular growth of C. pneumoniae was severely impaired in BMMs from Nlrp3(-/-), Asc(-/-), and Casp1(-/-) mice but not wild type or Nlrc4(-/-) mice. Furthermore defective NLRP3 inflammasome components led to accumulation of lipid droplets inside the infected BMMs, suggesting that uptake and/or utilization of lipids is disturbed in the absence of NLRP3 inflammasome activation. These results suggest C. pneumoniae has evolved to harness both host innate immune response and NLRP3 inflammasome activation, for the acquisition of essential nutrients necessary for intracellular growth. This unique property of C. pneumoniae may shed a new light on how C. pneumoniae increase the risk of atherosclerosis and metabolic syndrome.